add change log 2. change the converting unit from hanji, etc.
This commit is contained in:
		
							parent
							
								
									9b7d8d4432
								
							
						
					
					
						commit
						9f2836067a
					
				
					 7 changed files with 1030 additions and 266 deletions
				
			
		
							
								
								
									
										520
									
								
								corpus/教典例句.csv
									
									
									
									
									
								
							
							
						
						
									
										520
									
								
								corpus/教典例句.csv
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load diff
											
										
									
								
							
							
								
								
									
										160
									
								
								gitignore
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										160
									
								
								gitignore
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,160 @@ | |||
| # Byte-compiled / optimized / DLL files | ||||
| __pycache__/ | ||||
| *.py[cod] | ||||
| *$py.class | ||||
| 
 | ||||
| # C extensions | ||||
| *.so | ||||
| 
 | ||||
| # Distribution / packaging | ||||
| .Python | ||||
| build/ | ||||
| develop-eggs/ | ||||
| dist/ | ||||
| downloads/ | ||||
| eggs/ | ||||
| .eggs/ | ||||
| lib/ | ||||
| lib64/ | ||||
| parts/ | ||||
| sdist/ | ||||
| var/ | ||||
| wheels/ | ||||
| share/python-wheels/ | ||||
| *.egg-info/ | ||||
| .installed.cfg | ||||
| *.egg | ||||
| MANIFEST | ||||
| 
 | ||||
| # PyInstaller | ||||
| #  Usually these files are written by a python script from a template | ||||
| #  before PyInstaller builds the exe, so as to inject date/other infos into it. | ||||
| *.manifest | ||||
| *.spec | ||||
| 
 | ||||
| # Installer logs | ||||
| pip-log.txt | ||||
| pip-delete-this-directory.txt | ||||
| 
 | ||||
| # Unit test / coverage reports | ||||
| htmlcov/ | ||||
| .tox/ | ||||
| .nox/ | ||||
| .coverage | ||||
| .coverage.* | ||||
| .cache | ||||
| nosetests.xml | ||||
| coverage.xml | ||||
| *.cover | ||||
| *.py,cover | ||||
| .hypothesis/ | ||||
| .pytest_cache/ | ||||
| cover/ | ||||
| 
 | ||||
| # Translations | ||||
| *.mo | ||||
| *.pot | ||||
| 
 | ||||
| # Django stuff: | ||||
| *.log | ||||
| local_settings.py | ||||
| db.sqlite3 | ||||
| db.sqlite3-journal | ||||
| 
 | ||||
| # Flask stuff: | ||||
| instance/ | ||||
| .webassets-cache | ||||
| 
 | ||||
| # Scrapy stuff: | ||||
| .scrapy | ||||
| 
 | ||||
| # Sphinx documentation | ||||
| docs/_build/ | ||||
| 
 | ||||
| # PyBuilder | ||||
| .pybuilder/ | ||||
| target/ | ||||
| 
 | ||||
| # Jupyter Notebook | ||||
| .ipynb_checkpoints | ||||
| 
 | ||||
| # IPython | ||||
| profile_default/ | ||||
| ipython_config.py | ||||
| 
 | ||||
| # pyenv | ||||
| #   For a library or package, you might want to ignore these files since the code is | ||||
| #   intended to run in multiple environments; otherwise, check them in: | ||||
| # .python-version | ||||
| 
 | ||||
| # pipenv | ||||
| #   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. | ||||
| #   However, in case of collaboration, if having platform-specific dependencies or dependencies | ||||
| #   having no cross-platform support, pipenv may install dependencies that don't work, or not | ||||
| #   install all needed dependencies. | ||||
| #Pipfile.lock | ||||
| 
 | ||||
| # poetry | ||||
| #   Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. | ||||
| #   This is especially recommended for binary packages to ensure reproducibility, and is more | ||||
| #   commonly ignored for libraries. | ||||
| #   https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control | ||||
| #poetry.lock | ||||
| 
 | ||||
| # pdm | ||||
| #   Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. | ||||
| #pdm.lock | ||||
| #   pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it | ||||
| #   in version control. | ||||
| #   https://pdm.fming.dev/#use-with-ide | ||||
| .pdm.toml | ||||
| 
 | ||||
| # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm | ||||
| __pypackages__/ | ||||
| 
 | ||||
| # Celery stuff | ||||
| celerybeat-schedule | ||||
| celerybeat.pid | ||||
| 
 | ||||
| # SageMath parsed files | ||||
| *.sage.py | ||||
| 
 | ||||
| # Environments | ||||
| .env | ||||
| .venv | ||||
| env/ | ||||
| venv/ | ||||
| ENV/ | ||||
| env.bak/ | ||||
| venv.bak/ | ||||
| 
 | ||||
| # Spyder project settings | ||||
| .spyderproject | ||||
| .spyproject | ||||
| 
 | ||||
| # Rope project settings | ||||
| .ropeproject | ||||
| 
 | ||||
| # mkdocs documentation | ||||
| /site | ||||
| 
 | ||||
| # mypy | ||||
| .mypy_cache/ | ||||
| .dmypy.json | ||||
| dmypy.json | ||||
| 
 | ||||
| # Pyre type checker | ||||
| .pyre/ | ||||
| 
 | ||||
| # pytype static type analyzer | ||||
| .pytype/ | ||||
| 
 | ||||
| # Cython debug symbols | ||||
| cython_debug/ | ||||
| 
 | ||||
| # PyCharm | ||||
| #  JetBrains specific template is maintained in a separate JetBrains.gitignore that can | ||||
| #  be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore | ||||
| #  and can be added to the global gitignore or merged into this file.  For a more nuclear | ||||
| #  option (not recommended) you can uncomment the following to ignore the entire idea folder. | ||||
| #.idea/ | ||||
							
								
								
									
										
											BIN
										
									
								
								model.db
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								model.db
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										18
									
								
								pakkau.py
									
									
									
									
									
								
							
							
						
						
									
										18
									
								
								pakkau.py
									
									
									
									
									
								
							|  | @ -7,7 +7,7 @@ import os | |||
| import sqlite3 | ||||
| from itertools import chain | ||||
| 
 | ||||
| model_filename = "model.db" | ||||
| model_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), "model.db") | ||||
| 
 | ||||
| def genmod(): | ||||
|     corpus_path = "./corpus/" | ||||
|  | @ -44,7 +44,11 @@ def genmod(): | |||
| 
 | ||||
|     for i in new_data: | ||||
|         hanji = i[0] | ||||
|          | ||||
|         lomaji = i[1] | ||||
|         '''111''' | ||||
|         hanji = list(zip(hanji, lomaji)) | ||||
|         hanji = list(map(lambda x : x[0] + x[1], hanji)) | ||||
|         for j in range(len(i[0])): | ||||
|             if not hanji[j] in char_to_pronounce: | ||||
|                 char_to_pronounce[hanji[j]] = {lomaji[j] : 1} | ||||
|  | @ -65,7 +69,7 @@ def genmod(): | |||
|      | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         head_hanji = i[0][0] | ||||
|         head_hanji = i[0][0]+i[1][0] | ||||
| 
 | ||||
|         if head_hanji in init_freq: | ||||
|             init_freq[head_hanji] += 1 | ||||
|  | @ -86,7 +90,8 @@ def genmod(): | |||
|     cur.execute("CREATE TABLE transition(prev_char, next_char, freq)") | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         hanji = i[0] | ||||
|         hanji_tmp = list(zip(i[0],i[1])) | ||||
|         hanji = list(map(lambda x: x[0]+ x[1], hanji_tmp)) | ||||
|         for j in range(len(i[0])-1): | ||||
|             this_hanji = hanji[j] | ||||
|             next_hanji = hanji[j+1] | ||||
|  | @ -111,7 +116,6 @@ def genmod(): | |||
| def get_homophones(pron, cur, con): | ||||
|     homophones_raw = cur.execute("select hanji FROM pronounce where lomaji = ?", (pron, )).fetchall() | ||||
|     homophones = list(map(lambda x: x[0], homophones_raw)) | ||||
|      | ||||
|     return homophones | ||||
| 
 | ||||
| def convert(sentences): | ||||
|  | @ -171,7 +175,7 @@ def convert_one_sentence(sentence): | |||
| 
 | ||||
|         for i in homophones_sequence[0]: | ||||
|             i_freq = cur.execute('''select initial.freq FROM initial  | ||||
|     WHERE initial.char = ?''', (i['char'])).fetchall()[0][0] | ||||
|     WHERE initial.char = ?''', (i['char'],)).fetchall()[0][0] | ||||
| 
 | ||||
|             i['prob'] = i_freq / head_freq_total | ||||
|      | ||||
|  | @ -268,7 +272,9 @@ on p.hanji = p2.hanji where p2.lomaji = ?''', (small_capized[i],)).fetchall()[0] | |||
|         current = current_ls[0]["char"] | ||||
|         prev_char = current_ls[0]["prev_char"] | ||||
| 
 | ||||
| 
 | ||||
|     return_result = list(filter(lambda x : x != "", return_result)) | ||||
|     return_result = list(map(lambda x : x[0] if re.match(u'[⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎𪜀-\U0002b73f]', x) | ||||
|                                              else x, return_result)) | ||||
| 
 | ||||
| 
 | ||||
|     return return_result | ||||
|  |  | |||
							
								
								
									
										302
									
								
								pakkau.py~
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										302
									
								
								pakkau.py~
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,302 @@ | |||
| import re | ||||
| import pandas as pd | ||||
| import math | ||||
| from functools import reduce | ||||
| import argparse | ||||
| import os | ||||
| import sqlite3 | ||||
| from itertools import chain | ||||
| 
 | ||||
| model_filename = "model.db" | ||||
| 
 | ||||
| def genmod(): | ||||
|     corpus_path = "./corpus/" | ||||
|     df_list = [] | ||||
|     for file in os.listdir(corpus_path): | ||||
|         if file.endswith(".csv"): | ||||
|             df = pd.read_csv(corpus_path+file, header=0, names=['hanji', 'lomaji']) | ||||
|             df_list.append(df) | ||||
|     df = pd.concat(df_list) | ||||
|     df['lomaji'] = df['lomaji'].str.lower() | ||||
| 
 | ||||
|     new_data = [] | ||||
| 
 | ||||
|     for index, row in df.iterrows(): | ||||
|         hanji = list(filter(lambda x : re.match("[^、();:,。!?「」『』]", x), list(row['hanji']))) | ||||
|         tl = re.split(r'(:?[!?;,.\"\'\(\):]|[-]+|\s+)', row['lomaji']) | ||||
|         tl2 = list(filter(lambda x : re.match(r"([^\(\)^!:?; \'\",.\-\u3000])", x), tl)) | ||||
|         new_data.append((hanji, tl2)) | ||||
|         if (len(hanji) != len(tl2)): | ||||
|             raise ValueError(f"length of hanji {hanji} is different from romaji {tl2}.") | ||||
| 
 | ||||
|     #model_filename = "model.db" | ||||
|     try: | ||||
|         os.remove(model_filename) | ||||
|     except OSError: | ||||
|         pass | ||||
| 
 | ||||
|     con = sqlite3.connect(model_filename) | ||||
|     cur = con.cursor() | ||||
|     cur.execute("CREATE TABLE pronounce(hanji, lomaji, freq)") | ||||
| 
 | ||||
|      | ||||
|     char_to_pronounce = {} | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         hanji = i[0] | ||||
|         lomaji = i[1] | ||||
|         for j in range(len(i[0])): | ||||
|             if not hanji[j] in char_to_pronounce: | ||||
|                 char_to_pronounce[hanji[j]] = {lomaji[j] : 1} | ||||
|             elif not lomaji[j] in char_to_pronounce[hanji[j]]: | ||||
|                 char_to_pronounce[hanji[j]][lomaji[j]] = 1 | ||||
|             else: | ||||
|                 char_to_pronounce[hanji[j]][lomaji[j]] += 1 | ||||
| 
 | ||||
| 
 | ||||
|     for i in char_to_pronounce.keys(): | ||||
|         hanji =  char_to_pronounce[i] | ||||
|         for j in hanji.keys(): | ||||
|             cur.execute("INSERT INTO pronounce VALUES(?, ?, ?)", (i,j, hanji[j])) | ||||
| 
 | ||||
|     all_chars = char_to_pronounce.keys() | ||||
|     init_freq = {} #詞kap句開始ê字出現次數 | ||||
|     cur.execute("CREATE TABLE initial(char, freq)") | ||||
|      | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         head_hanji = i[0][0] | ||||
| 
 | ||||
|         if head_hanji in init_freq: | ||||
|             init_freq[head_hanji] += 1 | ||||
|         else: | ||||
|             init_freq[head_hanji] = 1 | ||||
|      | ||||
|     #補字 | ||||
|     min_weight = 0.1 | ||||
| 
 | ||||
|     for i in all_chars: | ||||
|         if not i in init_freq.keys(): | ||||
|             init_freq[i] = 0.1 | ||||
| 
 | ||||
|     for i in init_freq.keys(): | ||||
|         cur.execute("INSERT INTO initial VALUES(?, ?)", (i, init_freq[i])) | ||||
| 
 | ||||
|     char_transition = {} | ||||
|     cur.execute("CREATE TABLE transition(prev_char, next_char, freq)") | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         hanji = i[0] | ||||
|         for j in range(len(i[0])-1): | ||||
|             this_hanji = hanji[j] | ||||
|             next_hanji = hanji[j+1] | ||||
|             if not this_hanji in char_transition: | ||||
|                 char_transition[this_hanji] = {next_hanji : 1} | ||||
|             elif not next_hanji in char_transition[this_hanji]: | ||||
|                 char_transition[this_hanji][next_hanji] = 1 | ||||
|             else: | ||||
|                 char_transition[this_hanji][next_hanji] += 1 | ||||
| 
 | ||||
|     for i in char_transition.keys(): | ||||
|         next_char = char_transition[i] | ||||
|         for j in next_char.keys(): | ||||
|             cur.execute("INSERT INTO transition VALUES(?, ?, ?)", (i, j, next_char[j])) | ||||
|      | ||||
| 
 | ||||
|     #get_homophones("lí", cur, con) | ||||
|              | ||||
|     con.commit() | ||||
|     con.close() | ||||
| 
 | ||||
| def get_homophones(pron, cur, con): | ||||
|     homophones_raw = cur.execute("select hanji FROM pronounce where lomaji = ?", (pron, )).fetchall() | ||||
|     homophones = list(map(lambda x: x[0], homophones_raw)) | ||||
|      | ||||
|     return homophones | ||||
| 
 | ||||
| def convert(sentences): | ||||
|     splitted = re.split(r'(:?[!?;,.\"\'\(\):])', sentences) | ||||
|     splitted_cleaned = list(filter(lambda x : x != '', splitted)) | ||||
| 
 | ||||
|     result =  list(map(lambda s : convert_one_sentence(s), splitted_cleaned)) | ||||
| 
 | ||||
|     flatten_result = [x for xs in result for xss in xs for x in xss] | ||||
|     result_string = "".join(flatten_result) | ||||
| 
 | ||||
|      | ||||
|     print(result_string) | ||||
|     return result_string | ||||
|      | ||||
| def convert_one_sentence(sentence): | ||||
|     full_width = ["!", "?", ";",":",",","。", "(", ")"] | ||||
|     half_width = ["!", "?", ";", ":", ",", ".", "(", ")"] | ||||
| 
 | ||||
|     if len(sentence) == 1: | ||||
|         for i in range(len(half_width)): | ||||
|             if sentence[0] == half_width[i]: | ||||
|                 return [[full_width[i]]] | ||||
|          | ||||
|      | ||||
|     weight = 2/3 | ||||
|      | ||||
|     splitted = re.split(r'(--?|\s+)', sentence) | ||||
|     filtered = list(filter(lambda x :not re.match(r'(--?|\s+)', x), splitted)) | ||||
|     small_capized = list(map(lambda x : x.lower(), filtered)) | ||||
|     print("======", small_capized) | ||||
|     con = sqlite3.connect(model_filename) | ||||
|     cur = con.cursor() | ||||
| 
 | ||||
|     homophones_sequence_raw = list(map(lambda x : get_homophones(x, con, cur), small_capized)) | ||||
| 
 | ||||
|     homophones_sequence = [list(map (lambda x : {"char": x, | ||||
|                                       "prev_char": None, | ||||
|                                                  "prob" : 1}, i)) for i in homophones_sequence_raw] | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
|     head_freqs = list(map(lambda x : x[0], cur.execute('''select initial.freq FROM initial  | ||||
|     INNER JOIN pronounce ON pronounce.hanji = initial.char | ||||
|     WHERE pronounce.lomaji = ?''', (small_capized[0], )).fetchall())) | ||||
| 
 | ||||
|     return_result = [None] * len(small_capized) | ||||
|      | ||||
|     if head_freqs == []: | ||||
|         return_result[0] = filtered[0] | ||||
|         homophones_sequence[0] = [{"char": filtered[0], | ||||
|                                   "prev_char": None, | ||||
|                                   "prob" : 1}] | ||||
|      | ||||
|     else: | ||||
|         head_freq_total = reduce(lambda x , y : x + y, head_freqs) | ||||
| 
 | ||||
|         for i in homophones_sequence[0]: | ||||
|             i_freq = cur.execute('''select initial.freq FROM initial  | ||||
|     WHERE initial.char = ?''', (i['char'])).fetchall()[0][0] | ||||
| 
 | ||||
|             i['prob'] = i_freq / head_freq_total | ||||
|             print(i) | ||||
|      | ||||
|     #for i in homophones_sequence[0]: | ||||
|          | ||||
|     print("+++++", return_result) | ||||
| 
 | ||||
|     if len(small_capized) == 1: | ||||
|         max_prob = -math.inf | ||||
|         max_prob_char = None | ||||
|         for i in homophones_sequence[0]: | ||||
|             if i['prob'] > max_prob: | ||||
|                 max_prob_char = i['char'] | ||||
|                 max_prob = i['prob'] | ||||
| 
 | ||||
|         return_result[0] = max_prob_char | ||||
| 
 | ||||
|     else: | ||||
|         for i in range(1,len(small_capized)): | ||||
|             char_freqs = list(map(lambda x : x[0], cur.execute('''select initial.freq FROM initial  | ||||
|     INNER JOIN pronounce ON pronounce.hanji = initial.char | ||||
|     WHERE pronounce.lomaji = ?''', (small_capized[i], )).fetchall())) | ||||
| 
 | ||||
|             if char_freqs == []: | ||||
|                 return_result[i] = filtered[i] | ||||
|                 homophones_sequence[i] = [{"char": filtered[i], | ||||
|                                   "prev_char": None, | ||||
|                                   "prob" : 1}] | ||||
|                 prev_char = "" | ||||
|                 max_prob = -math.inf | ||||
|                 for m in homophones_sequence[i-1]: | ||||
|                     if m['prob'] > max_prob: | ||||
|                         max_prob = m['prob'] | ||||
|                         prev_char = m['char'] | ||||
|                 homophones_sequence[i][0]['prob'] = max_prob | ||||
|                 homophones_sequence[i][0]['prev_char'] = prev_char | ||||
|             else: | ||||
|                 total_transition_freq = cur.execute(''' | ||||
| SELECT sum(t.freq) | ||||
| FROM transition as t | ||||
| INNER JOIN pronounce as p1 ON p1.hanji = t.prev_char | ||||
| INNER JOIN pronounce as p2 ON p2.hanji = t.next_char | ||||
| where p2.lomaji = ?  and p1.lomaji = ?''', | ||||
|                                               (small_capized[i], small_capized[i-1])).fetchall()[0][0] | ||||
|                 for j in homophones_sequence[i]: | ||||
|                     prev_char = None | ||||
|                     max_prob = -math.inf | ||||
| 
 | ||||
|                     for k in homophones_sequence[i-1]: | ||||
|                         k_to_j_freq_raw = cur.execute('''select freq from transition | ||||
| where prev_char = ? and next_char = ? ''', (k["char"], j["char"])).fetchall() | ||||
|                         if k_to_j_freq_raw == []: | ||||
|                             den = cur.execute(''' | ||||
| SELECT sum(p.freq) | ||||
| FROM pronounce as p  | ||||
| inner join pronounce as p2 | ||||
| on p.hanji = p2.hanji where p2.lomaji = ?''', (small_capized[i],)).fetchall()[0][0]#分母 | ||||
|                             #分子 | ||||
|                             num = cur.execute(''' SELECT sum(freq) FROM pronounce as p  where hanji = ?''', (j["char"],)).fetchall()[0][0] | ||||
|                             print("+++", num, den) | ||||
|                             k_to_j_freq = num/den * (1-weight) | ||||
| 
 | ||||
|                         else: | ||||
|                             num = k_to_j_freq_raw[0][0] | ||||
|                             don = total_transition_freq | ||||
|                             k_to_j_freq =num/don * weight | ||||
|                         print("k_to_j_fr", k["char"], j["char"], k_to_j_freq) | ||||
|                         if k_to_j_freq * k["prob"] > max_prob: | ||||
|                             max_prob = k_to_j_freq * k["prob"] | ||||
|                             prev_char = k["char"] | ||||
|                     print("~-~_~-~-~-~-", prev_char, j["char"], max_prob) | ||||
|                     j["prob"] = max_prob | ||||
|                     j["prev_char"] = prev_char | ||||
| 
 | ||||
|     max_prob = -math.inf | ||||
|     current = "" | ||||
|     prev_char = "" | ||||
|     for i in homophones_sequence[len(homophones_sequence)-1]: | ||||
|         if i["prob"] > max_prob: | ||||
|             max_prob = i["prob"] | ||||
|             current = i["char"] | ||||
|             prev_char = i["prev_char"] | ||||
| 
 | ||||
|     print("~tail~~", current) | ||||
|     print(homophones_sequence) | ||||
|     return_result[len(homophones_sequence)-1] = current | ||||
| 
 | ||||
|     for i in range(len(homophones_sequence)-2, -1, -1): | ||||
|         current_ls = list(filter(lambda x : x["char"] == prev_char, | ||||
|                               homophones_sequence[i])) | ||||
|         print(prev_char) | ||||
|         return_result[i] = prev_char | ||||
|         current = current_ls[0]["char"] | ||||
|         prev_char = current_ls[0]["prev_char"] | ||||
| 
 | ||||
| 
 | ||||
|     print(return_result) | ||||
| 
 | ||||
|     return return_result | ||||
|      | ||||
| 
 | ||||
| def poj_to_tl(sentence): | ||||
|     return sentence | ||||
| 
 | ||||
| parser = argparse.ArgumentParser() | ||||
| parser.add_argument('--genmod', help='generate the model', action='store_true', | ||||
|                 required=False,) | ||||
| 
 | ||||
| parser.add_argument('sentence', metavar='SENTENCE', nargs='?', | ||||
|                     help='the sentence to be converted') | ||||
| parser.add_argument('--form', metavar='FORM', choices=["poj", "tl"], nargs=1, | ||||
|                     default=['poj'], | ||||
|                     help='the orthography to be used (poj or tl). Default is poj.') | ||||
| 
 | ||||
| args = parser.parse_args() | ||||
| 
 | ||||
| if args.genmod == True: | ||||
|     genmod() | ||||
| elif args.sentence != None: | ||||
|     if args.form == ['poj']: | ||||
|         sentence = poj_to_tl(args.sentence) | ||||
|         convert(sentence) | ||||
|     else: | ||||
|         convert(args.sentence) | ||||
| else: | ||||
|     parser.print_help() | ||||
| 
 | ||||
							
								
								
									
										207
									
								
								test2.py~
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										207
									
								
								test2.py~
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,207 @@ | |||
| import re | ||||
| import pandas as pd | ||||
| import math | ||||
| from functools import reduce | ||||
| 
 | ||||
| df1 = pd.read_csv('教典例句.csv', header=0, names=['漢字', '羅馬字']) | ||||
| df2 = pd.read_csv('教典發音詞.csv',header=0, names=['漢字', '羅馬字']) | ||||
| 
 | ||||
| 
 | ||||
| df = pd.concat([df1, df2]) # combine 2 csv dataframe | ||||
| 
 | ||||
| df['羅馬字'] = df['羅馬字'].str.lower() | ||||
| 
 | ||||
| new_data = [] | ||||
| 
 | ||||
| for index, row in df.iterrows(): | ||||
|     hanji = list(filter(lambda x : re.match("[^、();:,。!?「」『』]", x), list(row['漢字']))) | ||||
|     tl = re.split(r'(:?[!?;,.\"\'\(\):]|[-]+|\s+)', row['羅馬字']) | ||||
|     tl2 = list(filter(lambda x : re.match(r"([^\(\)^!:?; \'\",.\-\u3000])", x), tl)) | ||||
|     new_data.append((hanji, tl2)) | ||||
|     #if (len(hanji) != len(tl2)): | ||||
|         #print(tl2, hanji) | ||||
|     #print(tl2, hanji) | ||||
| 
 | ||||
| 
 | ||||
| # char-To-Pronounciation Prossibility dict | ||||
| 
 | ||||
| char_to_pronounce = {} | ||||
| 
 | ||||
| for i in new_data: | ||||
|     hanji = i[0] | ||||
|     lomaji = i[1] | ||||
|     for j in range(len(i[0])): | ||||
|         if not hanji[j] in char_to_pronounce: | ||||
|             char_to_pronounce[hanji[j]] = {lomaji[j] : 1} | ||||
|         elif not lomaji[j] in char_to_pronounce[hanji[j]]: | ||||
|             char_to_pronounce[hanji[j]][lomaji[j]] = 1 | ||||
|         else: | ||||
|             char_to_pronounce[hanji[j]][lomaji[j]] += 1 | ||||
| 
 | ||||
| for char, char_reading in char_to_pronounce.items(): | ||||
|     total_count = reduce((lambda x, y : x + y), list(char_reading.values())) | ||||
| 
 | ||||
|     for i in char_reading.keys(): | ||||
|         char_reading[i] = char_reading[i] / float(total_count) | ||||
| 
 | ||||
| #print(char_to_pronounce) | ||||
| 
 | ||||
| all_chars = char_to_pronounce.keys() | ||||
| 
 | ||||
| '''{'提': 45, '宋': 7, '完': 18, '刻': 7, '局': 9, | ||||
|  '巡': 8, '畫': 25, '青': 56, '尪': 13}''' | ||||
| init_freq = {} #詞kap句開始ê字出現次數 | ||||
| 
 | ||||
| for i in new_data: | ||||
|     head_hanji = i[0][0] | ||||
| 
 | ||||
|     if head_hanji in init_freq: | ||||
|         init_freq[head_hanji] += 1 | ||||
|     else: | ||||
|         init_freq[head_hanji] = 1 | ||||
| 
 | ||||
| #補字 | ||||
| min_weight = 0.1 | ||||
| 
 | ||||
| for i in all_chars: | ||||
|     if not i in init_freq.keys(): | ||||
|         init_freq[i] = 0.1 | ||||
|          | ||||
| #print(init_freq) | ||||
|      | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # probability of P(next=c2|this=c1) | ||||
| char_transition = {} | ||||
| 
 | ||||
| for i in new_data: | ||||
|     hanji = i[0] | ||||
|     for j in range(len(i[0])-1): | ||||
|         this_hanji = hanji[j] | ||||
|         next_hanji = hanji[j+1] | ||||
|         if not this_hanji in char_transition: | ||||
|             char_transition[this_hanji] = {next_hanji : 1} | ||||
|         elif not next_hanji in char_transition[this_hanji]: | ||||
|             char_transition[this_hanji][next_hanji] = 1 | ||||
|         else: | ||||
|             char_transition[this_hanji][next_hanji] += 1 | ||||
| 
 | ||||
| #print(char_transition) | ||||
| 
 | ||||
| #補字 | ||||
| for i in all_chars: | ||||
|     if not i in char_transition.keys(): | ||||
|         char_transition[i] = {} | ||||
|         for j in all_chars: | ||||
|             char_transition[i][j] = init_freq[j] | ||||
|     else: | ||||
|         pass | ||||
| 
 | ||||
| for i in char_transition.keys(): | ||||
|     for j in all_chars: | ||||
|         if not j in char_transition[i].keys(): | ||||
|             char_transition[i][j] = min_weight * (0.03+math.log(init_freq[j])) | ||||
| 
 | ||||
| 
 | ||||
| for char, next_char in char_transition.items(): | ||||
|     total_count = 0 | ||||
|     [total_count := total_count + x for x in list(next_char.values())] | ||||
| 
 | ||||
|     for i in next_char.keys(): | ||||
|         next_char[i] = next_char[i] / float(total_count) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def get_homophones(pron): | ||||
|     homophones = [] | ||||
|     for i in char_to_pronounce.keys(): | ||||
|         if pron in char_to_pronounce[i].keys(): | ||||
|             homophones.append(i) | ||||
|         else: | ||||
|             pass | ||||
| 
 | ||||
|     return homophones | ||||
| 
 | ||||
| input_lomaji = ["guá", "kap", "tshit", "á", "lâi", "khì", "tâi", "tiong", "tshit", "thô", "sūn", "suà", "tsē", "ko", "thih"] | ||||
| 
 | ||||
| char_candidates = [] | ||||
| 
 | ||||
| for i in input_lomaji: | ||||
|     homophones = list(map(lambda x : {"char": x, | ||||
|                                       "prev_char": None, | ||||
|                                       "prob" : None}, # probibility | ||||
|                           get_homophones(i))) | ||||
|     char_candidates.append(homophones) | ||||
| 
 | ||||
| #print(char_candidates) | ||||
| def get_max_prob(input_lmj, char_cand): | ||||
|     for i in range(len(input_lmj)): | ||||
|         if i == 0: | ||||
|             for j in char_cand[i]: | ||||
|                 init_freq_sum = reduce(lambda x, y : x + y, | ||||
|                                        list( | ||||
|                                            map(lambda x : init_freq[x["char"]] , | ||||
|                                                char_cand[0]))) | ||||
|                 print(init_freq_sum) | ||||
|                 ch = j["char"] | ||||
|                 init_to_char_prob = init_freq[ch] / init_freq_sum # get the ratio | ||||
|                 char_reading_prob = char_to_pronounce[ch][input_lmj[0]] | ||||
|              | ||||
|                 j["prob"] = init_to_char_prob * char_reading_prob | ||||
|          | ||||
|             result = "" | ||||
|             max_num = -math.inf | ||||
| 
 | ||||
|             for i in char_cand[0]: | ||||
|                 if i["prob"] >= max_num: | ||||
|                     max_num = i["prob"] | ||||
|                     result = i["char"] | ||||
| 
 | ||||
|             #print(result) | ||||
|         else: | ||||
|             for j in char_cand[i]: | ||||
|                 prob = -math.inf | ||||
|                 prev_char = "" | ||||
|                 for k in char_cand[i-1]: | ||||
|                     k_prob = k["prob"] | ||||
|                     #print(k["char"], "k_prob:", k_prob) | ||||
|                     k_to_j_prob = char_transition[k["char"]][j["char"]] | ||||
|                     #print(k["char"], "->",j["char"] ,"k_to_j_prob:", k_to_j_prob) | ||||
|                     j_to_pron_prob = char_to_pronounce[j["char"]][input_lmj[i]] | ||||
|                     total_tmp_prob = k_prob * k_to_j_prob * j_to_pron_prob  | ||||
|                     if prob < total_tmp_prob: | ||||
|                         prob = total_tmp_prob | ||||
|                         prev_char = k | ||||
| 
 | ||||
|                 j["prev_char"] = prev_char["char"] | ||||
|                 j["prob"] = prob | ||||
| 
 | ||||
|     real_last_char = "" | ||||
|     prev_char = "" | ||||
|     prob = -math.inf | ||||
|     for i in char_cand[-1]: | ||||
|         if i["prob"] > prob: | ||||
|             prob = i["prob"] | ||||
|             real_last_char = i["char"] | ||||
|             prev_char = i["prev_char"] | ||||
| 
 | ||||
|     print(real_last_char) | ||||
| 
 | ||||
|     result_hanji = [real_last_char] | ||||
|     for i in range(len(input_lmj)-2, -1, -1): | ||||
|         current = list(filter(lambda x : x["char"] == prev_char, | ||||
|                               char_cand[i]))[0] | ||||
|         result_hanji.append(current["char"]) | ||||
|         prev_char = current["prev_char"] | ||||
|          | ||||
| 
 | ||||
|     result_hanji.reverse() | ||||
|      | ||||
|     result_hanji_string = "".join(result_hanji) | ||||
|     print("輸入ê羅馬字陣列(array):", input_lomaji) | ||||
|     print("輸出ê漢字:", result_hanji_string) | ||||
|                  | ||||
|      | ||||
| get_max_prob(input_lomaji, char_candidates) | ||||
							
								
								
									
										89
									
								
								test3.py~
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										89
									
								
								test3.py~
									
									
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,89 @@ | |||
| import re | ||||
| import pandas as pd | ||||
| import math | ||||
| from functools import reduce | ||||
| import argparse | ||||
| import os | ||||
| import sqlite3 | ||||
| 
 | ||||
| def genmod(): | ||||
|     corpus_path = "./corpus/" | ||||
|     df_list = [] | ||||
|     for file in os.listdir(corpus_path): | ||||
|         if file.endswith(".csv"): | ||||
|             df = pd.read_csv(corpus_path+file, header=0, names=['hanji', 'lomaji']) | ||||
|             df_list.append(df) | ||||
|     df = pd.concat(df_list) | ||||
|     df['lomaji'] = df['lomaji'].str.lower() | ||||
| 
 | ||||
|     new_data = [] | ||||
| 
 | ||||
|     for index, row in df.iterrows(): | ||||
|         hanji = list(filter(lambda x : re.match("[^、();:,。!?「」『』]", x), list(row['hanji']))) | ||||
|         tl = re.split(r'(:?[!?;,.\"\'\(\):]|[-]+|\s+)', row['lomaji']) | ||||
|         tl2 = list(filter(lambda x : re.match(r"([^\(\)^!:?; \'\",.\-\u3000])", x), tl)) | ||||
|         new_data.append((hanji, tl2)) | ||||
|         if (len(hanji) != len(tl2)): | ||||
|             raise ValueError(f"length of hanji {hanji} is different from romaji {tl2}.") | ||||
| 
 | ||||
|     model_filename = "model.db" | ||||
|     try: | ||||
|         os.remove(model_filename) | ||||
|     except OSError: | ||||
|         pass | ||||
| 
 | ||||
|     con = sqlite3.connect(model_filename) | ||||
|     cur = con.cursor() | ||||
|     cur.execute("CREATE TABLE pronounce(hanji, lomaji, freq)") | ||||
| 
 | ||||
|      | ||||
|     char_to_pronounce = {} | ||||
| 
 | ||||
|     for i in new_data: | ||||
|         hanji = i[0] | ||||
|         lomaji = i[1] | ||||
|         for j in range(len(i[0])): | ||||
|             if not hanji[j] in char_to_pronounce: | ||||
|                 char_to_pronounce[hanji[j]] = {lomaji[j] : 1} | ||||
|             elif not lomaji[j] in char_to_pronounce[hanji[j]]: | ||||
|                 char_to_pronounce[hanji[j]][lomaji[j]] = 1 | ||||
|             else: | ||||
|                 char_to_pronounce[hanji[j]][lomaji[j]] += 1 | ||||
| 
 | ||||
|     print(char_to_pronounce) | ||||
| 
 | ||||
|     for i in char_to_pronounce.keys(): | ||||
|         hanji =  char_to_pronounce[i] | ||||
|         for j in hanji.keys(): | ||||
|             cur.execute("INSERT INTO pronounce VALUES(?, ?, ?)", (i,j, hanji[j])) | ||||
|              | ||||
|     #con.commit() | ||||
|     con.commit() | ||||
|     con.close() | ||||
| 
 | ||||
| def convert(sentence): | ||||
|     pass | ||||
| 
 | ||||
| parser = argparse.ArgumentParser() | ||||
| parser.add_argument('--genmod', help='generate the model', action='store_true', | ||||
|                 required=False,) | ||||
| 
 | ||||
| parser.add_argument('sentence', metavar='SENTENCE', nargs='?', | ||||
|                     help='the sentence to be converted') | ||||
| parser.add_argument('--form', metavar='FORM', choices=["poj", "tl"], nargs=1, | ||||
|                     default=['poj'], | ||||
|                     help='the orthography to be used (poj or tl). Default is poj.') | ||||
| 
 | ||||
| args = parser.parse_args() | ||||
| print(args) | ||||
| if args.genmod == True: | ||||
|     genmod() | ||||
| elif args.sentence != None: | ||||
|     if args.form == ['poj']: | ||||
|         sentence = poj_to_tl(args.sentence) | ||||
|         print(convert(sentence)) | ||||
|     else: | ||||
|         print(convert(args.sentence)) | ||||
| else: | ||||
|     parser.print_help() | ||||
| 
 | ||||
		Loading…
	
		Reference in a new issue