Compare commits

..

No commits in common. "mecab" and "master" have entirely different histories.

3 changed files with 97 additions and 117 deletions

View file

@ -1,24 +1,32 @@
# Pseudo Chinese (with MeCab)
# Pseudo Chinese
Convert Japanese to pseudo-Chinese.
## Description
This tool will automatically generate fake Chinese from Japanese sentences.
Using MeCab to parse and word-tag Japanese sentences instead of COTOHA API.
## Demo
私は本日定時退社します -> 我本日定時退社
私は本日定時退社します -> 我本日定時退社也
私はお酒を飲みたい -> 我御酒飲欲
私はお酒を飲みたい -> 我飲酒希望
## Requirement
- Python 3.5.1
- mecab-python3
- unidic-lite
- [COTOHA API](https://api.ce-cotoha.com/contents/index.html)
You need to register for a COTOHA API account before you can run this tool.
Once you have registered your COTOHA API account, you will set your Client ID and Client Secret to `env.json` .
```json
{
"client_id": "yourclinetid",
"client_secret": "yourclinetsecret"
}
```
## Usage
```
$ python -u pseudo-chinese.py [sentence]
$ python -u pseudo-chinese.py
```
## Contribution
@ -34,5 +42,4 @@ MIT
## Author
- [Shoichiro Kono](https://github.com/k2font) (orig. creater)
- [Tan Kian-ting](https://github.com/yoxem) (porting to MeCab, and modified it.)
[Shoichiro Kono](https://github.com/k2font)

4
env.json Normal file
View file

@ -0,0 +1,4 @@
{
"client_id": "<Client ID>",
"client_secret": "<Client Secret>"
}

View file

@ -1,135 +1,104 @@
import functools
import MeCab
import requests
import json
import sys
import re
BASE_URL = "https://api.ce-cotoha.com/api/dev/nlp/"
# アクセストークンを取得する関数
# Function to get the access token.
# 获取访问令牌的函数
def auth(client_id, client_secret):
token_url = "https://api.ce-cotoha.com/v1/oauth/accesstokens"
headers = {
"Content-Type": "application/json",
"charset": "UTF-8"
}
data = {
"grantType": "client_credentials",
"clientId": client_id,
"clientSecret": client_secret
}
r = requests.post(token_url,headers=headers,data=json.dumps(data))
return r.json()["access_token"]
# 形態素解析する関数
# Function for morphological analysis.
# 形态学分析功能
def parse(sentence):
mecab_tagger = MeCab.Tagger()
raw_result = mecab_tagger.parse(sentence).split('\n')
result = []
for i in raw_result[:-2]:
j = i.split('\t')
item = dict()
item['form'] = j[0] # 食べ
#print(j)
if len(j) > 1:
item['lemma'] = j[3] # 食べる
item['pos'] = j[4] # 動詞-一般
item['features'] = j[6] # 連用形-一般
else:
item['lemma'] = j[0]
item["pos"] = ""
item["features"] = ""
result.append(item)
return result
def is_hira(string):
if isinstance(string, str):
string = list(string)
if len(string) == 0:
return False
elif len(string) == 1:
return (("" <= string[0]) and (string[0] <= ""))
if len(string) > 1:
return functools.reduce((lambda x, y: (is_hira(x) and is_hira(y))) , string)
def contain_kanji(str):
if len(str) == 0:
return False
elif len(str) == 1:
return re.match(r"[一-龯]", str)
if len(str) > 1:
return functools.reduce(lambda x, y: contain_kanji(x) or contain_kanji(y) , str)
def parse(sentence, access_token):
base_url = BASE_URL
headers = {
"Content-Type": "application/json",
"charset": "UTF-8",
"Authorization": "Bearer {}".format(access_token)
}
data = {
"sentence": sentence,
"type": "default"
}
r = requests.post(base_url + "v1/parse",headers=headers,data=json.dumps(data))
return r.json()
# ひらがなを削除する関数
# Function to delete hiragana.
# 删除平假名的功能
def hira_to_blank(str):
return "".join(["" if ("" <= ch <= "") else ch for ch in str])
return "".join(["" if ("" <= ch <= "") else ch for ch in str])
if __name__ == "__main__":
envjson = open('env.json', 'r')
json_load = json.load(envjson)
CLIENT_ID = json_load["client_id"]
CLIENT_SECRET = json_load["client_secret"]
document = "私は明日、伊豆大島に行きたい"
args = sys.argv
if len(args) >= 2:
document = str(args[1])
parse_document = parse(document)
#print(parse_document)
access_token = auth(CLIENT_ID, CLIENT_SECRET)
parse_document = parse(document, access_token)
print(parse_document)
result_list = list()
for i, token in enumerate(parse_document):
# 形態素解析結果に置き換えルールを適用する
if (token["pos"] != "助詞-格助詞"
and token["pos"] != "助詞-接続助詞"
and token["pos"] != "助詞-終助詞"
and token["pos"] != "助詞-接続助詞" ):
if '終止形-一般' in token["features"]:
if ("為る" in token["lemma"]) or ("ます" in token["lemma"]):
prime = "" # don't translate it.
elif "たい" in token["lemma"]:
prime = ""
elif token["lemma"] in ["ない", "無い"]:
prime = ""
elif token['lemma'] == '':
prime = ""
else:
print(is_hira(token['lemma']))
if is_hira(token['lemma']):
prime = token["form"]
for chunks in parse_document['result']:
for token in chunks["tokens"]:
# 形態素解析結果に置き換えルールを適用する
if (token["pos"] != "連用助詞"
and token["pos"] != "引用助詞"
and token["pos"] != "終助詞"
and token["pos"] != "接続接尾辞"
and token["pos"] != "動詞活用語尾"):
if token["pos"] == "動詞接尾辞" and '終止' in token["features"]:
if ("する" in token["lemma"]) or ("ます" in token["lemma"]):
prime = ""
elif "たい" in token["lemma"]:
prime = "希望"
elif token['lemma'] != 'ない':
prime = ""
else:
prime = token["lemma"]
else:
if is_hira(token["lemma"]) and contain_kanji(token["form"]):
prime=token["form"]
prime = "実行"
else:
prime = token["lemma"]
prime = token["form"]
if token['lemma'] == '':
prime = ''
if (token['lemma'] == '' or token['lemma'] == '貴方' or token['lemma'] == 'お前'):
prime = ''
if (token['lemma'] == '' or token['lemma'] == 'あなた' or token['lemma'] == 'お前'):
prime = ''
if token['lemma'] == '為る' and parse_document[i-1]['pos'] == '名詞-普通名詞-サ変可能':
prime = ''
if len(token["features"]) != 0:
if "SURU" in token["features"][0] :
prime = "実行"
elif "連体" in token['features'][0]:
prime = ""
elif "疑問符" in token["features"][0]:
prime = "如何?"
result_list.append(hira_to_blank(prime))
compound_matched = re.match("([^-]+)-([^-]+)", token['lemma'])
if compound_matched:
prime = compound_matched.group(1)
if token['lemma'] == '私-代名詞':
prime = ''
if len(token["features"]) != 0:
if "連体形-一般" in token['features']:
if token['lemma'] == 'ない':
prime = "無之"
else:
prime = prime + ""
result_list.append(hira_to_blank(prime))
if token['lemma'] == '' and token['pos'] == "助詞-格助詞":
prime = ""
result_list.append(hira_to_blank(prime))
if token["form"] == "" and token['pos'] == '助詞-終助詞':
prime = ""
result_list.append(hira_to_blank(prime))
print(''.join(result_list))
print(''.join(result_list))